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This research program has been directed at discovering neurobiological features (cell

specializations, activity patterns in collections of neurons, circuit design features) essential

to the encoding, organizing, and utilizing recognition memories by networks in mammalian

cortex. Three levels of work have been involved: 1) physiological and anatomical analyses

of specific, well defined examples of telencephalic networks; 2) translation of the

neurobiological results into computer simulations of the networks; 3) testing of the

physiological and behavioral predictions of the computer models. It is anticipated that

the results of the research will provide the bases of formal hypotheses regarding the links

between cortical properties and computational operations and provide guidelines for the

design of novel devices capable of dealing with the difficult computational problems

presented by real world environments. ,The following points summarize the progress made

towards these goals during the tenure of ONR Grant #N00014-86-K-0333.

(1) Links were discovered between learning related brain rhythms and the cellular

machinery that causes stable changes in synaptic strength. These relationships were

converted into a set of biologically valid, synaptic "learning rules" for implementation in

neural networks. These rules describe where and when changes will occur on cells

receiving complex spatio-temporal patterns of input activity. The observation that

rhythmic activity has a profound impact on the operations of cortical networks directly

influenced nearly all aspects of the modelling efforts that followed.

(2) The above discoveries were made in hippocampus, a structure in many ways ideal

for neurobiological work but less than appropriate as a starting point for building

computer simulations with predictive power (see original proposal for arguments relating
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to this point). The olfactory bulb-olfactory (piriform) cortex was selected as a target for

modelling and it was essential to establish that the rules developed for hippocampus

extend to this system. Experimental work showed that the basic cell biology and

spatio-tcmporal patterns involved in modifying hippocampus held true for cortex as well.

Differences are present and the origins and significance of these are still under study. A

particularly noteworthy point established by the neurobiological work is that the basic

sampling rhythm for olfaction (4-7 Hz) is uniquely effective in changing synaptic

strength; this provides a connection between behavior and specific cellular phenomena.

(3) Two further tests were made of the behavioral significance of the phenomena and

rules obtained from the neurobiological studies. First, the same rhythmic patterns of

stimulation used to probe the networks in vitro were employed as discriminative cues in

an olfactory learning problem. Rats learned and remembered these "electric odors" about

as well as they did natural odors. Moreover, the same synaptic changes found in the in

vitro experiments developed in the freely moving animals as learning occurred. Studies

are still in progress on these phenomena. Second, drugs that block the neurobiological

mechanisms that produce synaptic modifications also block learning, and do so without

impairing recall. These results give us confidence that the biological properties we have

identified are in fact critical to the formation of recognition memories.

(4) Computer simulations of the bulb-cortex system have been found to possess
,/-

unexpected capacities for analyzing input stimuli and for organizing memories. Following

learning of many cues, the model is able to recognize a complex (known) signal even

when it is masked by a much stronger input. It does this by exploiting repetitive

sampling and various inhibitory processes (simulations of inhibitory potentials found in

cortical networks) it contains. Perhaps more remarkably, the simulation also builds
LI

perceptual hierarchies without outside supervision. As noted, the model uses repetitive

sampling. In our earlier studies, we found that after extensive learning the model would

generate a single response pattern (i.e., collection of cortical cells becoming active) to

closely related signals in the stimulus world; responses on subsequent sample cycles were
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unique to the cue now present. Recently, we have found that thc combincd bulb-cortex

network will perform true hierarchical clustering in that it will form representations for

groups, subgroups, and individuals. This is a task that is computationally difficult and

one of considerable practical significance. We have extracted an alogrithm from a

simplified version of the network and found it to be novel, parallel, and to show

temporal linearity with regard to the number of network elements and input signals. Thus

the model may be appropriate for silicon implementation and will scale upwards with

linear cost. We are currently exploring engineering possibilities.

(5) The first tests of the predictions of the model have been carried out using

chronic recording from the olfactory cortex of rats engaged in learning an odor

discrimination problem. These experiments have confirmed that the cortex uses sparse

coding (i.e., few cells respond to any given odor) and that its activity is synchronized

with the sampling rate. This work is still in progress and more detailed tests should be

available shortly.

1. Physiological studies of synaptic learnine rules.

Hippocampal long term potentiation serves as a model synaptic plasticity mechanism

for rapid acquisition and long-term retention of memories for "facts" or "data". Our

studies have aimed at identifying naturally-occurring cell discharge pattens that induce

LTP and uncovering the cellular mechanisms responsible for the efficacy of these

patterns. The hippocampal EEG during learning exhibits a sinusoidal 4-7 Hz EEG wave

(theta) with short bursts of cell discharges rising on the peaks of the waves. Our prior

work established that brief bursts of afferent stimulation, synchronized to the frequency

of the theta rhythm (5 Hz) are optimal for induction of LTP in field CAl. We have now

shown that this "theta burst" pattern is particularly effective because, by reducing

synaptic inhibition, it promotes levels of postsynaptic depolarization sufficient to allow

calcium influx through NMDA receptor-linked channels (Larson and Lynch, 1988). The

voltage dependence of LTP induction proves to be a significant parameter in the

operation of the piriform model (see below). Our prior work indicated that a burst of
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activity in one input to a postsynaptic target cell does not induce LTP but "primes" the

cell so that a burst to a separate input one theta cycle later does induce LTP. This

provides one temporal rule for synaptic interactions and LTP. We have extended these

studies to examine interactions between inputs within one theta cycle. A "primed" cell

received asynchronous bursts to three separate inputs such that stimulation of the second

input temporally overlapped stimulation of the first and third but the first and third did

not overlap with each other. Most LTP was induced at synapses activated by the first

burst, less by the second, and least by the third. This effect involves both retrograde

facilitation and anterograde suppression effects within one theta cycle (Larson and Lynch,

1989; Greenberg et al., 1988). Indeed, it appears that induction of LTP at one set of

synapses is followed by a brief refractory period when LTP at other synapses is inhibited

(Greenberg et al., 1988) In summary, this set of studies accomplished two objectives.

One, it identified for the first time a link between brain wave patterns and mechanisms

that produce synaptic changes. Two, it provided a set of biologically valid synaptic

learning rules for computer modelling.

Chronic recording techniques have been used to address two questions related to the

stability of LTP. In the first, we simply asked how long the potentiation effect lasts.

Rats were chronically implanted with stimulation electrodes in the Schaffer-commissural

system and recording electrodes in the CAI field. Responses were tested for several days

before and 1-4 weeks after induction of LTP by theta burst stimulation (TBS). Once

induced, LTP was found to persist in non-decremental fashion for as long as recording

conditions could be maintained; in some cases this was several weeks (Staubli and Lynch,

1987). Given that LTP appears to persist indefinitely, the question arises as to whether

or not particular patterns of synaptic activity might actively reverse it. LTP was induced

by theta burst stimulation in the chronic preparation and shortly thereaftcr (5-10 min) the

potentiated input was stimulated at low frequency (1-5Hz for 50-100 sec). In the majority

of animals (64%) low frequency stimulation reversed the LTP when the animals were

tested either I hr or I day later. Subsequent burst stimulation established that LTP could
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be reinstated in these animals. Low frequency stimulation did not reduce responses on

inputs that had not been potentiated (Staubli and Lynch, in press). These findings

suggest that LTP can be persistent enough to encode long-term memories but may be

subject to reversal shortly after its induction.

Ongoing studies arc aimed at understanding the cellular basis of the theta-plasticity

rules and the mechanism by which LTP can be reversed. In terms of building

simulations, precise data concerning spatial and temporal interactions between synapses are

crucial and these learning rules are being incorporated into current model.

2. Piriform hysioloev. in vitro.

The synaptic learning rules developed thus far are based on the CAI field of

hippocampus. For a variety of reasons including more direct access to peripheral input,

the model we are using for simulation work is of the piriform cortex. Therefore, we

have been studying the basic physiology of this region with particular regard to plasticity

mechanisms. Field potentials evoked in the superficial layers by stimulation of the lateral

olfactory tract (LOT) or associational (ASSN) inputs to piriform cortex in vitro can be

distinguished by three criteria: (1) visual placement of the stimulation electrode in either

the LOT or in layer :b, (2) laminar profile analysis, and (3) absence of paired-pulse

facilitation at ASSN synapses.

Our first experiments were to establish the receptor pharmacology of these two

systems and compare them to hippocampus. In the presence of physiological levels of

extracellular magnesium, we found that the NMDA antagonist AP5 (50 uM), "ad no

detectable effect on synaptic responses in either system but the non-NMDA antagonist

DNQX (20 uM) completely suppressed responses in both systems. However, in

magnesium-free medium both systems exhibited NMDA receptor-mediated responses as

demonstrated either by the presence of a response in DNQX ,. the blockade of a

response component in AP5 (Larson et al., 1989).

For LTP experiments, two preparations were used. One of "rostral" piriform,

containing the LOT and one of "caudal" piriform, beginning at the point where the LOT
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ceases to be visible as a definable fiber tract. Theta burst stimulation to the LOT

induced LTP in 16/48 slices examined, a proportion much lower than that observed in

hippocampal experiments. Stimulation of ASSN inputs in rostral slices induced LTP in

16/30 c,'scs but in 36/40 caudal slices. In both systems, TBS did not induce the

immediate, decremental short-term potentiation observed in hippocampus, rather

potentiation developed gradually over 1-2 minutes after TBS. The low success rate at

LOT synapses raised the possibility that the NMDA system might be difficult to activate

in these contacts. Stimulation with long 100 Hz trains was equally ineffective in slices

that failed to potentiate after TBS; however, TBS applied in Mg++-free medium, a

condition which greatly facilitates NMDA receptor currents, induced LTP in 5/5 slices

tested. The pharmacology of LTP induction was also studied in the caudal associational

system where LTP induction was very reliable. Perfusion with AP5 blocked LTP

induction in 9/9 slices and LTP was obtained after drug washout in 6/6 cases (Jung,

Larson, and Lynch, in prep.).

These results indicate that both LOT and ASSN synapses in piriform cortex possess

the NMDA receptor-linked LTP induction mechanism and that it can be activated by TBS.

This encourages the speculation that the LTP rules derived from hippocampus hold for

piriform as well, but demonstration of this requires further experiments.

3. Piriform synaptic Plasticity in vivo.

Rats sample odors at the theta rhythm during mystacial sniffing and it is reasonable

to assume that signals are processed by the olfactory system at this rhythm. Indeed, even

the hippocampal EEG is synchronized to the sniff cycle. We have developed a paradigm

to test learning-induced changes in synaptic efficacy in the piriform cortex using theta

burst stimulation of the LOT as an "electric odor" discriminative stimulus. Rats were first

trained on a two odor successive cue go-no go task for water reward. After learning-set

acquisition, LOT stimulation was substituted for the positive odor. Single-pulses at the

theta frequency did not elicit any obvious behavioral reaction, but when theta bursts were

used most rats began sniffing and approached the water port as they do in response to
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the positive odor. They rapidly learned to discriminate between the electric odor and

real odors as well as between two separate electric odors. Examination o: single-pulse

responses evoked by the electrode used as a cue revealed a substantial synaptic

potentiation (35%) after a single training session. This effect was still evident 24 hrs.

later. Interestingly, the same stimulation pattern did not induce potentiation when given

to naive animals, suggesting that some other system that facilitates synaptic plasticity is

activated during learning sessions (Roman et al., 1987). This may also relate to the

difficulty in obtaining LTP in the LOT synapses in slices. In any case, bursts of activity

occurring at the frequency of behavioral sniffing which is synchronized to the

hippocampal EEG proves to be an effective sensory cue and, moreover, results in synaptic

potentiation in piriform as in hippocampus. This provides a further link between the

LTP-based learning rules derived from hippocampus and endogenous rhythms and

behavior.

4. Simulation and theoretical analysis of Diriform cortex

a) Hierarchical readout via repetitive sampling

Simulation and analysis of layer II of piriform cortex have incorporated a broad

range of its anatomical and physiological characteristics in an attempt to understand how

these properties might interact to produce coherent operation, and how these operations

might generate recognizable, useful and testable computational and psychological function.

Two networks, bulb and cortex, consisting of distinct architectures and physiologies, are

extensively connected via both feedforward and feedback projections. The entire system

works in synchrony with a 4-7 Hz (theta) sampling pattern that is characteristic of small

mammals. Bulb mitral cells (these neurons innervated by the peripheral receptors and

that project to cortex) receive inputs presented repetitively for brief periods. Inputs to

the cortical network arise from the resultant synchronous bursting in a subset of mitral

cells, yielding cyclic activity in relatively discrete "operation cycles" time-locked to the

sampling rhythm. Sparse random connectivity in the simulation selectively activates those

cortical cells whose dendrites arc most connected to the input lines that are active.
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Learning increments active synapses on sufficiently depolarized cells via an LTP rule.

Input lines shared across many similar input cues, and thus participating in many

learning episodes, will strengthen their target synapses more than lines which participate

in relatively fewer episodes. The result is that cortical dendrites (which can be viewed

as vectors being moved by synaptic learning) become increasingly well-tuned to those

inputs containing the shared subset; i.e., those inputs that are sufficiently similar to

constitute members of a cluster. We have shown that this circuit will generate cell-firing

responses that group learned cues by similarity. That is, for a given threshold of input

similarity among a set of cues, outputs are identical for all of the cues, whereas below

that similarity threshold, outputs are much less similar than corresponding inputs

(Granger, Ambros-Ingerson and Lynch, 1989). The predominantly feedforward collateral

axons of the cortex enhance this effect (Granger, Whitson and Lynch, 1989).

Feedback from cortex to the bulb inhibitory layer in the model is trained via a

correlational rule during an earlier "developmental" period. The feedback then selectively

inhibits those bulb mitral cells that are most responsible for the cortical output response,

via relatively long-lasting inhibition. Resulting renormalization of bulb activity produces

a distinct spatial pattern of bulb mitral cell firing, which in turn activates a distinct set

of cortical cells. This inhibitory feedback process can continue until bulb is sufficiently

inhibited to be largely quiescent. Cortical responses after the initial (first sample)

response become progressively more different for different cues, increasingly approaching

unique encodings of individual cues.

Taken together, the resulting sequence of responses are hierarchically ordered such

that the first-cycle response indicates similarity-based cluster information for learned cues

whereas subsequent cycle responses denote increasingly subordinate categories (Granger,

Ambros-Ingerson, Henry and Lynch, 1989; Granger, Ambros-Ingerson and Lynch, 1989).

These findings suggest that sensory cues may be "iteratively recognized" at a sequence of

successively lower levels, with the first level recognized corresponding to a natural "entry

level" for perceptual processing. Cognitive studies of visual and conceptual recognition in
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hierarchically organized domains indicate that such preferred recognition lcvc!" do exist

and exert a strong influence over early processing: human subjects robustly prcfer a "basic

level" description (e.g., "bird" in thc hierarchy animal-bird-sparrow), recognizing cues faster

at this level and more frcquently than cither supcrordinatc or subordinate referents for

the same objects. We have found empirically that first-cyclc responses from the piriform

network robustly indicate the basic level as empirically identified in human experiments

using the same hierarchically-organized data for both the human subjects and the

simulation (Granger, Gluck, Crane and Lynch, 1989). The network first-cycle responses at

the basic level are followed by subordinate level information in second and later cycles,

separated by intervals of 200 msec simulated time in the model; interestingly, studies by

Hoffmann and Ziessler (1983) indicate that average reaction time differences between

recognition of the basic and immediately-subordinate description levels was 148 msec.

b) Information-theoretic view of hierarchical clustering

We have also found that a proposed mathematical predictor of the basic level effect

successfully predicts both the human and network performance on this data (Gluck and

Corter, 1985; Lynch, Granger, Larson and Baudry, 1989). This predictor is an

information-theoretic measure of the information value of clustering of data into groups,

measuring the increased information about features of a cue gained by knowledge of its

category membership. Briefly, for cues considered as multidimensional vectors, if a

particular cue dimeision D can take on values vi ***vn with probabilities p(v1) ... p'd,

respectively, then the uncertainty of the value of D is:
U(D) v0 log Xvi)

i=1

(Shannon 1948), and this uncertainty about the value of D for this cue can be reduced,

via knowledge that the cue is in a particular category C, by the amount U(D) - U(D/C)

where

U(DIC) =- p(viIC)log p(vilC)
i=1

and p(vi/C) is the conditional probability of attribute value vi given that the cue is in

category C. Thus a measure of the overall information value I of a category is the
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expected reduction in the uncertainty of the value of -0 duc to knowledge of category

mcmbcrship:

I = )C) U D - u (xDIC )l

p(C) - p(v)log p(v) - (- I p(vC)log p(viIC)

The information-thcorctic origin of the measure suggests that the clustering performed by

the piriform network may be learning information-optimal clusters; this idea is being

tested on a range of hierarchically-organized data by measuring the information value of

the simulation-generated clusters and comparing them against optimal values (see Lynch,

Granger, Larson, and Baudry (1989) for discussion), and analyzing sensitivity of these

results to perturbations in parameters of the model.

A given cue population can be divided into clusters in factorially many ways (see

Granger et al., 1988; Lynch, Granger, Larson & Baudry, 1989); Granger Ambros-Ingerson

and Lynch (1989) empirically and analytically related synaptic parameters of the cortical

simulation to its clustering performance, deriving a monotonic relation between the ratio

of potentiated (maximum) to naive (minimum) synaptic weights, and the breadth (maximal

distance between members) of the clusters formed from a given cue population. A

developmental algorithm was proposed to sample the cue environment and set these weight

parameters so as to automatically give rise to information-optimal clustering of the cues

in the "adult" network (Granger, Ambros-Ingerson and Lynch, 1989).

c) LTP induction rules. laver 11. and seauence learning

Simulation experiments have thus far focused primarily on the expression

characteristics of LTP, embedded in a specific layer of cortex (layer 11), emphasizing the

sequential memory encoding and readout described. Initial experiments with the induction

mechanisms of LTP indicate that the "sequence" rule described earlier, in combination

with rules for the interaction of layer III cells and the basal dendrites of layer II and III

cells, enables encodings that powerfully distinguish among cues consisting of slightly

different sequences of cue constituents (e.g. ABC,BCA), which might occur given different
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relative concentrations of chemicals, or different orders of frequencies or formant

transitions occurring within a phoneme. In addition, modeling efforts aimed at the

functional implications of a temporary, non-synapsc-spccific plasticity mechanism like that

of potentiation of the dcntatc mossy fiber synapscs on hippocampal CA3 pyramidal cells,

and interactions between this short-term potentiation and long-term mechanisms (e.g., via

via known feedback pathways from hippocampus to olfactory bulb), suggest that these

mechanisms might combine to enable learning of longer temporal sequences of cues.

d) A novel algorithm for hierarchical clustering

The ability of the network to identify hierarchical statistical structure in data raises

questions of characterization of the essential design features of the network underlying its

hierarchical clustering ability. Analysis has recently led to such a characterization, and

controlled testing revealed that the resulting simplified formation of the network provides

a novel and efficient algorithm for hierarchical clustering.

The simplified formulation consists of a weight matrix W (corresponding to the layer

I connectivity matrix; see Fig. 1) divided into H non-overlapping "winners-take-all" or

"competitive" patches: sets P,, P29 .... PH of weight vectors C (i.e., columns of W) such

that W = UiPi. The network is trained on a set of N-dimensional real-valued vectors (i.e.,

spatial patterns of activation in the lateral olfactory tract), via an extension of a

correlational (Hebbian) learning algorithm (a simplification of the LTP rules for synaptic

modification). For each input vector X, the column vectors (dendrites) C that win the

(winners-take-all) competition on X (corresponding to target calls that are most

depolarized by this input) are identified. The synaptic contacts on these vectors are then

trained, moving the vectors closer to X by an increment 7c- Feedback from the

just-trained vectors then partially inhibits or 'masks' the input. The remainder of the

input is presented to the next network patch matrix in the hierarchy, until all H

hierarchical subnets have been trained, over H operation cycles. At any given

hierarchical level, the Cs can be shown to converge to the means of the clusters of cues

on which they are trained, as in related "competitive learning" algorithms (e.g., von der
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Malsburg, 1973; Grossbcrg, 1976; Kohoncn, 1984; Rumclhart and Zipscr, 1986). The

feedback inhibition step enables vectors in I' assigned to the subordinate hierarchical

levels to converge to means of subclusters of the data, allowing secondary (and H-ary)

structure to bc identified (for H divisions of the weight matrix).

Formally:

for X iII training-sample
for/h C {1,2...,I1}

for C E win(X, ')
c , c + -Y (x - C)

end-for
X i- X - mean(win(X, Ph))

end-for
end-for(1

where H is the depth of the hierarchy; C is the subset of weight vectors in a patch Ph that wins

the competition on the input X; win(X, Ph) {C E Ph : X - C = maxcEph(X. Ci) A X - C > 0};

and 7c is the learning rate.

Testing has shown that this novel network algorithm robustly identifies hierarchical

statistical structure in data, ana that its results compare well with those for standard

hierarchical clustering techniques. Moreover, the algorithm is inherently efficient, and

scales linearly with the size of the cue population to be clustered. In particular, the

space complexity of the algorithm is 0(n), i.e., the number of nodes required for

completion separation of n cues depends only linearly on in; and training time per

presentation is also linear in the total number of categories of cues to be distinguished

(Ambros-Ingerson, Granger and Lynch, 1989).

Simulation and theoretical analysis of this cortical network has thus provided an

instance in which a novel and efficient algorithm for a well-studied computational

problem has been developed from a specific cortical network. Reflecting the system from

which it was derived, the algorithm is inherently parallel and hence lends itself to

implementation in silicon. A collaborative effort with Dan llarnmcrstrom of Adaptipe
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Systems, Inc., is undertaking the design of a novel chip ("silicon cortex") based on the

network analysis described here. Bailey and Hammcrstrom (1988) have shown the need

for multiplexing of interconnections in silicon implementations of networks of sizes on

the order of hundreds of thousands of cells, via analysis of the space constraints involved

in available CMOS processes, and have designed a novel technique (Augmented Broadcast

Hierarchy) for this purpose, which is being used in the implementation of this cortical

network.

5. Sinele-unit recordine in piriform cortex In behaving rats.

Recordings of single-cell activity during olfactory behavior are used to test the

validity of the model. Animals are trained in a two-odor successive cue go-no go

olfactory discrimination task. After about 5 sessions using different odor pairs, the rats

acquire a new discrimination within about five trials. Single-units in piriform are

recorded using tungsten microelectrodes attached to a moveable microdrive implanted to

the skull. Once a cell is isolated, the animal is run on several training sessions using

novel or previously-learned odor pairs.

To date we have recorded activity in some 60 well-isolated units. On the basis of

mean firing rate, these units fall into two obviously different categories. Type I units

are the most commonly encountered (55/60), have rather slow discharge rates (1-5 Hz),

broad spikes (>500 msec duration of negativity, filtered), and occasionally emit a high

frequency burst of 2-12 spikes (100 Hz). Type I1 units are rare (5/60), fire rapidly (20-50

Hz), and have narrow spikes (<500 msec negativity).

Depending on how long the unit can be held, firing patterns are recorded during 2 to

20 sessions with different odor pairs. Over half (24/43) type I units did not respond to

any of the odors tested, typically four sessions (8 odors). Eight units showed selective

firing to only one of the odors tested. The rest responded with increased firing to more

than one odor. The charactcistic response of a sensitive unit consisted of a single spike

or a short burst on the majority of trials when that odor was presented. The response

typically occurred 250 mscc after the valve was switched to present the odorant.
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Some of the type 11 units we have thus far recorded have shown interesting

properties. Activity of these rapidly firing cells shows a marked suppression (sometimes

near complete silence after firing at 20-40 Hz) when the rat enters the sniff port

(odor delivery area) but before odor onset. Upon odor presentation, the cells resume

firing, sometimes beginning with a "rebound burst". Since we suspect these neurons to be

inhibitory interneurons, this may indicate a suppression of inhibition while the animal is

awaiting the olfactory cue. However, it is clear that we need to record many more of

these cells to verify these conclusions.

Although these results are clearly preliminary, and more data is needed, it is clear

that piriform units are not responding in global fashion to any odor presented. Over 75%

of the type I cells tested responded to less than two of the array of odors presented.

The anatomy and connectivity of piriform as well as the operation of the network model

suggest sparse coding of odors and our preliminary results suggest this to be the case.

6. Studies of olfactory behavior: LTP and memory.

Behavioral studies are used to test predictions of the model and examine how

higher-order effects can arise from the simpler functions achieved by the network.

Results from the simulation suggest that the capacity of the olfactory memory system

should be large and hence that representations for learned odors should not suffer

interference from new learning and that mixtures of novel odors should be treated

differently than mixtures of previously learned odors. Also of interest is how other brain

networks, such as the dorsomedial nucleus and hippocampus interact with piriform in

olfactory memory storage.

One key assumption we have made is that LTP is used as the learning mechanism for

representational forms of memory. We have tested this by asking whether or not LTP

and memory share a common pharmacology. That is, if LTP is involved in memory

encoding, it is expected that drugs which disrupt LTP should also prevent acquisition of

new representations. The NMDA receptor is a logical place to start since it is crucial to

LTP induction and potent and selective antagonists for the receptor are available. We
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had previously shown that intravcntricular infusion of AP5 blocks LTP in vii'o and also

prevents acquisition of spatial representations (maps) required for navigation in a water

maze (Morris et al., Nature 319: 774-776, 1986); we have now tested the effects of this

manipulation on olfactory discrimination learning. We used a two-odor

simultaneous-presentation olfactory discrimination task. Rats were trained on 8 pairs of

odors prior to AP5 treatment. After APS, acquisition of new discriminations was

impaired although memory for previously learned odors was intact (Staubli et al., 1989).

We had also previously shown that intra-ventricular administration of ieupeptin, a

protease inhibitor, blocks both spatial (Staubli et al., Behav., Neural. Biol., 40:58-69, 1984)

and olfactory (Staubli et al., Brain Res. 337: 333-336) learning. We have now completed

two studies testing the effects of leupeptin on LTP induction. In the first, the drug (20

mg/mi) was chronically infused into the lateral ventricles of rats prepared with chronic

stimulation and recording electrodes in the CAI field. Leupeptin infusion had very little

effect on baseline evoked responses but when LTP was tested (3-5 days after beginning

infusion) only 3 of 13 animals showed potentiation one day later and only one exhibited

stable potentiation for several days. Control animals with saline pumps all (11 of 11)

exhibited robust and stable LTP. The block of LTP by ieupeptin was reversible: after

disconnection of the pumps, LTP was induced in 6 of 7 cases (Staubli et al., 1988). In

the second study, hippocampal slices were incubated in the presence of 40-100 uM

leupeptin. Incubation for 2 hr or less with the drug had no effect on LTP but after 3

hrs or more, LTP was significantly reduced (Oliver et al., 1989). Examination of the

postsynaptic responses to the theta burst stimulation used to induce LTP indicated that

leupeptin had no significant effects on the depolarization and presumably the NMDA

response in the slices in which LTP was reduced. Studies using recently developed and

more selective calpain inhibitors are presently in progress.

It should be noted that neither AP5 nor leupeptin affected acquisition of avoidance

conditioning. Current concepts emphasize the existence of multiple memory forms using

different brain systems; this may be a reflection of these distinctions.
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We have conducted a number of studies examining the nature of the olfactory

memory system. As noted above, others have shown that rats acquire learning-sets for

odor discriminations and this is dependent on the dorsomcdial nucleus of the thalamus.

Once the learning-set is formed, rats learn new discriminations after as few as one

exposure to each of an odor pair. Training on as many as 30 odor pairs was found not

to impair subsequent learning of new pairs, indicating that the capacity of the system is

substantial and that already established representations do not interfere with learning of

new ones (Staubli et al., 1987). These results are in accord with findings from

experiments using the piriform network simulation. Tests using novel odor pairs composed

of smell mixtures having common component odorants indicated that rats learn these as

gestalts rather than analyzing the components, also in agreement with the simulation.

However, when a previously-learned odor was included in a composite odor of reversed

valence, rats were impaired as if they were perceiving the known smell rather than a

novel one (Staubli et al., 1987). This result also has an analog in the model.

Influence of the hippocampus on olfactory learning was tested by removing its

primary input, the entorhinal cortex. Entorhinal lesions resulted in rapid forgetting of

olfactory discriminations - that is, a discrimination was acquired normally during a

training session, but no significant retention was displayed 3 hrs later (Staubli et al.,

1986). These results imply that a system activated by the hippocampus, perhaps involving

the medial septum-diagonal bands complex, is necessary for long-term retention.
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